

Bicycle Transportation Budget Plan: Lawrence, KS

Bicycle Objectives Lawrence Planning Documents

- Establish a dedicated funding plan to complete the implementation of a bikeway system plan, and for maintenance of the region's bicycle facilities.
- Prioritize and implement critical bikeway segments that provide continuity for the system and provide connections to major activity centers: shopping areas, schools, KU campus, etc.

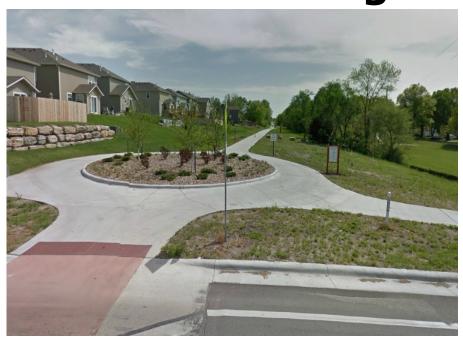
A soon to be complete circumferential loop

Principle bicycle supportive policies

- Lawrence Complete Streets Policy of 2012
- Inclusion of bicycle lanes on all new and reconstructed arterials and collector streets
- Inclusion of bicycle lanes in certain instances of street mill and overlay
- Administrative shift in 2000 of bicycle projects from Parks & Rec. to Public Works Dept.
- Seventeen bicycle planning documents since 1976

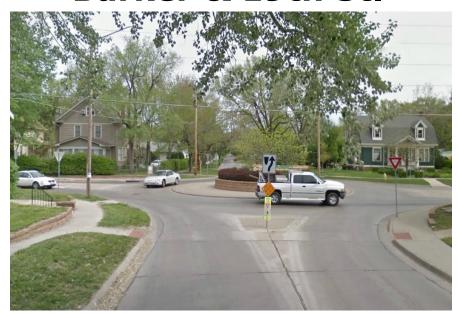
Bicycle lanes on select segments of the Bicycle Works Program of 2001

9th St, Kentucky to Mississippi St.


Mike Yoder: Lawrence J.W.

East 15th Street

Transportation corridor serving employment and population centers


Burroughs Creek Trail

Neighborhood intersection calming for bicycle-pedestrian safety

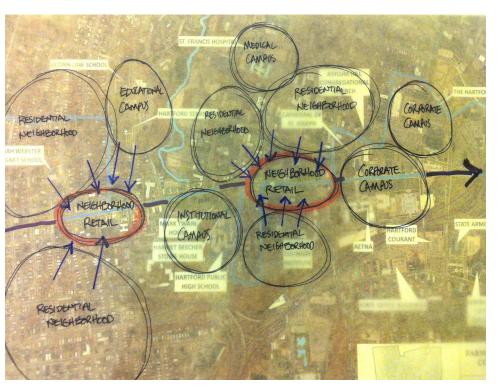
Barker & 19th St.

Goldfield & Eldridge St.

Evolution of Lawrence Bicycle Facilities

- Beginning in the mid 1970's, Lawrence's bicycle infrastructure progressed through four phases.
- Initial phase: "bicycle route" signs on streets, & 5-foot wide asphalt "trails" through several parks
- **Second phase:** bicycle lanes only if they fit in certain street's cross section
- **Third phase:** 10 foot wide concrete side paths along major auto projects and in new parks, primarily Federally funded
- Fourth phase: purposeful projects on selected streets for traffic calming or complete streets

Bicycle Transportation Effectiveness


Unfortunately, many of these bicycle facilities are ineffective for transportation purposes.

- Bicycle route signs generally provide little guidance to a chosen destination.
- Unprotected bicycle lanes or shared lanes are generally not granny or child friendly.
- Side paths serve discretionary recreation users in remote circumferential areas or loop parks more often than essential transportation users.
- Projects are frequently sited because a street is an easy retrofit, physically or financially, instead of by origin-destination needs.

What's needed for a bicycle transportation system build out?

Professional design and comprehensive funding

Projects initiated by origin-destination indicators

- Neighborhood flow
- Feeder routes from neighborhoods
- Corridors connecting key nodes: schools, commercial areas, parks, medical
- Circumferential loop

Main Bicycle Transportation Components

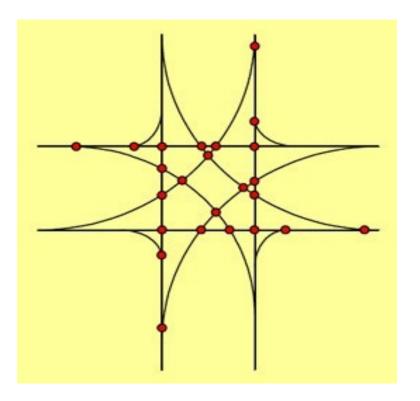
Right sizing roads

Bicycle boulevards

Main Bicycle Transportation Components

Two way bicycle tracks

Protected bicycle lanes


Main Bicycle Transportation Components Roadway geometrics

- 95% of cyclists need a dedicated travel space separate from motorists.
- Efficient travel means few stops. 25% more energy, and 33% more time is required to regain speed from a full stop.
- Efficient maneuverability requires gentle curves, less than 5% slope, and a debris and defect free surface.

Main Bicycle Transportation Components Intersection management

- A two-lane by two-lane intersection has 32 motorist conflict points.
- Include bicycle lanes in all directions, and the conflict points about double.
- Regardless of how protected are bicycle lanes or tracks, vulnerability and accidents mostly occur at the intersections.

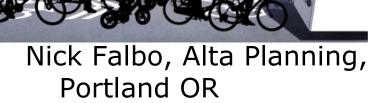
Cyclist-Motorist Shared Space is Unsafe and Intimidating

Average person won't consider cycling there

Nick Falbo, Alta Planning, Portland OR

Protected Bicycle Lanes

Cyclists buffered by green strip or parking



Nick Falbo, Alta Planning, Portland OR

Intersection Conflicts are the Crux of the Problem

Bicycle lane benefits are negated at intersections

Protected Intersection

Avoids conflicts using visibility, enhanced reaction time, and predictable movements

Nick Falbo, Alta Planning, Portland OR

Protected Intersection: Larger Turn Radius

Key element is the large-radius protective barrier extending into the intersection

Turning motorist becomes perpendicular to bicycle lane for visibility Nick Falbo, Alta Planning, Portland OR

Bicycle Boulevards: AKA Bike/Walk Streets

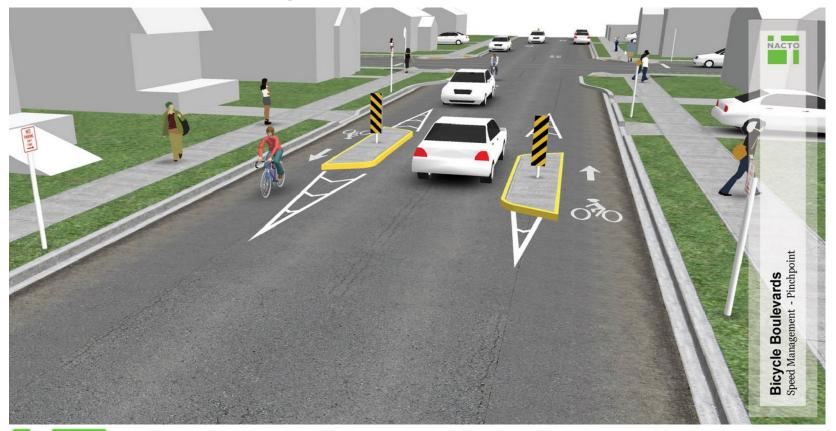
- Shared streets, made safe and convenient for cyclists of all ages and skill levels.
- Bicycles given priority on streets reconfigured for low speed, low volume, and low stress.
- Designed with few or no stops for cyclists.
- Minimum of two miles long, they are trunk lines connecting major destinations.

Bicycle Boulevards: AKA Bike/Walk Streets

Key design elements

Speed reduction

Motorist volume reduction by access control


Wayfinding signs

The main tools currently used by the City Engineer and the Traffic Engineer are:

- Bike route signs, center islands, painted lanes and sharrows, traffic circles, roundabouts, vertical deflection devices, and multi-use rec paths.
- A good start, but there are so many more innovative tools that can be used.

Speed management: Auto Pinch Point

National Association of City Transportation Officials

Speed management: Curb chicanes

Volume management: Diagonal Diverter

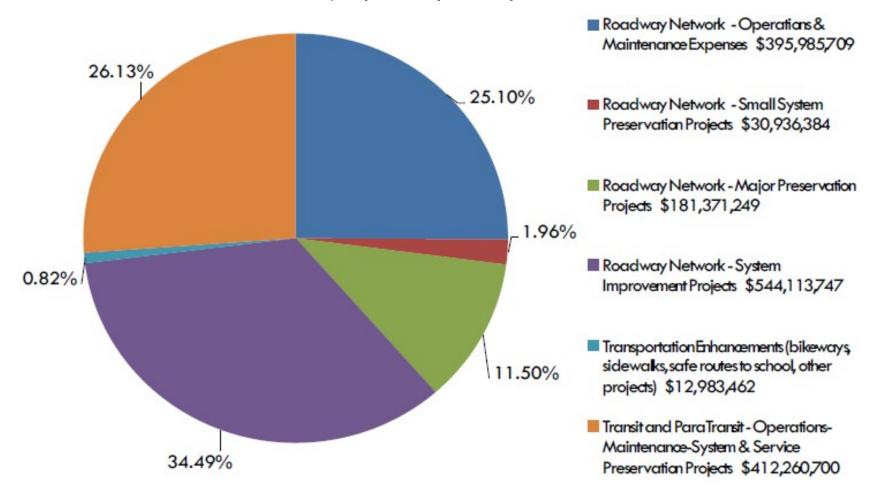
Volume management: Right-in Right-out

Volume management: Full Auto Closure

National Association of City Transportation Officials

Volume management: Partial Auto Closure

Bicycle Funding Concerns


When faced with bicycle funding needs, Lawrence frequently has chosen "low-cost, no-cost" options.

- Motor vehicle needs are given higher priority, because bicycles have been viewed as recreation more than transportation.
- More substantive bicycle facilities go mostly unfunded, unless piggybacked on auto projects.
- Near exclusive reliance on bicycle grant funding sets priorities by expediency rather than origindestination transportation needs.
- In older neighborhoods where there's the highest user rate, bicycle-safe street modifications are avoided because of perceived greater costs.

T2040 Financing Plan

Total Transportation System Funding for the 2012-2040 Period by Funding Type

\$1,577,651,251

Bicycle Funding Analysis

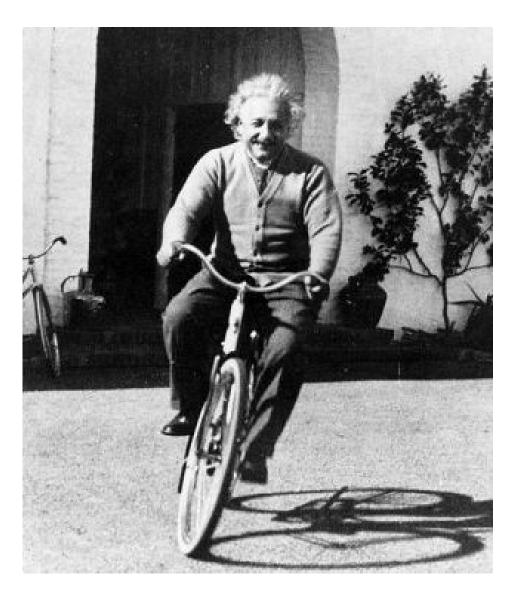
T2040 Transportation System Funding projections for 2012-2040: \$1,577,651,251

- 0.82% for bicycles AND pedestrian projects average per annum (T.E.): \$463,695
- Motorist network construction & maintenance average/annum (excl. transit): \$41,157,396
- Lawrence funds availability Sales Tax for Transportation, Special Alcohol Tax, Gas Tax, Public Parking Enterprise Fund, approximate per annum: \$20,000,000
- Politically tough mil levy increase

Bicycle Funding Request Capital Investment

Real Estate Capital

Reallocate public pavement for bicycle tracks, protected lanes, and bicycle boulevards


Creative Staff Capital

Create a "Bicycle Engineering Division" within the Public Works Dept. Hire a "Bicycle Division Manager" to implement build-out.

Financial Capital

Create a bicycle line item of \$2 million/year or 10% of available motor vehicle funds, <u>and</u> allocate 6% of FHWA project funds to bicycles.

It's not rocket science

Thank you very much

Michael Almon

